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 Abstract

The implementation of codesign applications generally
requires the use of heterogeneous resources (e.g., proces-
sor cores, hardware accelerators) in one system. Interfac-
ing hardware and software components together and
providing communications between them are particularly
error proned and time consuming tasks. Hence, on the
basis of a generic architecture we propose an extended
communication synthesis method that provides character-
ization of communications and their implementation
scheme in the target architecture. This method takes place
after partitioning and scheduling and can constitute the
basis of a back end of a codesign framework leading to
HW/SW integration.

1. Introduction

The evaluation of several hardware/software mixed
solutions is generally essential to obtain an efficient imple-
mentation of a codesign application. These evaluations are
based on different underlying architectures and heteroge-
neous components. Thus, designers need to define specific
communication interfaces and the associated mechanisms
for each solution. This step of the codesign flow is particu-
larly time consuming and error proned. Therefore, it is
essential to propose new methodologies dealing with com-
munication synthesis to promote fast system prototyping.
The aim is to characterize the communications of the
application and to minimize the corresponding resources.
Furthermore, the determination of the protocols, which
may become difficult for complex systems using heteroge-
neous resources, is solved by the synthesis algorithm.
Hence, starting from the specification, the communication
synthesis step provides all the information needful to
reach the HW/SW integration phase. Several studies han-
dling this problem have already been published. In Yen
and al. [1995] the developed heuristic leads to the determi-
nation of the communication resources (e.g., size and
number of buses) and their corresponding schedule on the
target architecture. However, they do not provide interface
structures and control mechanisms to manage the commu-
nications. In Freund et al. [1997a] the evaluation and the
scheduling of the communications is also done. Further-
more the protocols (i.e., synchronous or asynchronous) are

determined. Works proposed by Gong et al. [1996] are
based on four target architectures with local and global
memories. Their method uses generic protocols and con-
ducts to the final implementation of the application on the
target architectures. The most relevant work to our prob-
lem is presented in Filo et al. [1993]. In order to minimize
control logic on channels their interface optimization
attempts to maximize the use of the non-blocking proto-
col. But the side effects consist in the introduction of con-
trol delays in both sender and receiver that impose a global
reference clock. Moreover, most of the studies only con-
sider a target architecture composed of a processor and an
ASIC which may not be sufficient for complex embedded
systems.

2. Underlying architectures

In our approach, we focus on the last steps of a code-
sign flow dedicated for static digital signal processing
applications. These applications generally require the use
of several processor cores (e.g., DSP, RISC or microcon-
troller), coprocessors and hardware accelerators. Hence,
the underlying architecture of our communication synthe-
sis method is composed of heterogeneous components
[Gogniat 1997]. Computations between these components
can be performed in parallel for higher performance. Fur-
thermore, a component can execute its computations and
communications either in a sequential or in a parallel
mode through the use of a dual internal memory. Since,
components of the architecture may result from previous
designs we consider that each unit is encapsulated and
communicates with well defined protocols (i.e., synchro-
nous and asynchronous).

3. Communication synthesis

Based on the considered architecture, the last codesign
phases include the communication synthesis and the HW/
SW integration steps. In this approach the communication
synthesis problem is addressed as a characterization and
an optimization of communications involved in the appli-
cation. Compared to Freund et al. [1997b] the extended
synthesis method detailed in this paper is based on a
refined communication model achieving accurate synthe-
sis results. Communication synthesis and HW/SW integra-



tion take place after the partitioning and scheduling phase
allowing the use of various partitioning heuristics.

3.1. Graph model of partitioned applications

Static signal processing applications can be modeled by
a direct acyclic graph, where nodes represent computa-
tions and edges correspond to data dependencies. We note
G(V,E) the graph of the application after partitioning and
scheduling. An edgeei,j ∈ E between two nodesVi, Vj ∈ V

denotes a dependency. Three types of dependency are con-
sidered: temporal, functional and internal. A temporal
dependency (TD) edge connects two nodes which do not
communicate but are allocated to the same component.
This link describes the order of execution of nodes
imposed by the scheduling. Functional dependency edges
(FD) represent data transfers between nodes. These edges
are annotated with the volume (Vdata) and the word size
(Ldata) of transferred data. An internal dependency (ID)
edge connects two communicating nodes implemented on
the same component. In this case, no transfer is needed
since the data are stored in the internal memory of the
component.

3.2. Communication synthesis flow

The aim of the communication synthesis steps
(Figure 1) is to minimize the number of communication
resources and the overhead delays due to communications
while respecting specification constraints. The communi-
cation model used for the synthesis is based on the target
architecture and is characterized by the following features:

• The transfer mode (i.e., parallel or sequential)

• The transfer type (i.e., synchronous or asynchronous)

• The communication supports and protocols (i.e., FIFO,
bus - blocking, non blocking)

With the parallel transfer mode a communication and a
computation thread can be executed in parallel using the
internal data memories associated with each component of
the architecture. The transfer type corresponds to the exe-
cution schemes of communications (i.e., synchronous or
asynchronous). The communication supports represent the
hardware resources required to implement the data trans-
fers (i.e., FIFO, bus). The protocol associated with a com-
munication can be blocking or non blocking. A blocking
protocol must be selected if the data consistency is not
guaranteed with a non blocking protocol. Figure 1 repre-
sents the synthesis flow which is divided in two main
tasks. The first one performs the characterization of each
communication of the partitioned and scheduled graph.

The second task optimizes the number of resources and
determines the set of controls required to manage the com-
munications. This last task leads to the complete overall
definition of the final architecture.

3.2.1. Characterization of communication edges

The main contributing step in the characterization of
communications is the transfer type determination since
this step maximizes the number of synchronous communi-
cations and consequently minimizes the number of FIFO.
Two methods of evaluation have been addressed in order
to reach this goal. They consider respectively a global and
a fine behavioral model of the system. The global one
introduced in Freund et al. [1997b] is based on a usual
communication and execution model [Lee and Messer-
schmitt 1987]. As shown in Figure 2(b) this model merges
in a single time frame the computation (i.e.,Texei) and
communication times (i.e., send timestei,j and/or receive

timestri,j) associated with a node of the graph. For exam-

ple the nodeV1 sending data toV3,V4,V5 has a new execu-
tion time corresponding to its computation time increased
by the three data emission delays. With this model, the
execution of a node can only starts when all the data pro-
duced by its preceding nodes are transferred. Hence, the
communication synthesis is based on a global model of
communication. In the fine evaluation method, the com-
munication model does not merge computations and com-
munications leading to a more realistic behavioral
description of the system (Figure 2(c)). Furthermore, a
single communication timetsyni,j is considered corre-

sponding to the elapse time induced by the data transfer.
This fine model permits a global and a local optimization
of the communications since each data transfer associated
with a node is locally ordered before the scheduling of the
whole sequence of transfers. This point is detailed in the
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sequel. Since the global evaluation approach has been
published in Freund et al. [1997b], we focus mainly on the
fine evaluation method.

The communication synthesis starts with an estimation
of all the transfer times associated with the communica-
tion edges (i.e., functional dependencies) of the partitioned
graph. These communication edges correspond to data
transfers between the different instances of the architec-
ture (e.g., DSP and RISC, DSP and co-processor). With
the considered target architecture these estimations repre-
sent the data transfer durations imposed by the internal
memories of the sender (tei,j) and the receiver (tri,j) and

are given by:

where Tcom means eithertei,j or tri,j, Vdata represents the

number of data to be transferred between the sender and
the receiver,Ldatacorresponds to the size of data,Nc is the

number of clock cycles to access a data in the internal
memory, Tc is the clock period of the communication

interface andLbus corresponds to the internal memory bus

size. As the aim of the communication synthesis is to pro-
mote synchronous communications, the communication
time tsyni,j between two nodesVi andVj is estimated as the

maximum of the sending and the receiving times i.e., the
slowest interface imposes its communication rate with a
handshake protocol.
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The fine evaluation model illustrated in Figure 2(c)
leads to reschedule nodes of the graph in order to take into
account data transfers between components. This is
achieved by computing a preliminary schedule of data
transfers involved in a sequence of communications asso-
ciated with a node. The order of analysis of these data
transfers is given by scheduling rules. These rules sched-
ule first the outputs of data corresponding to functional
dependency edges (Figure 3(a)). We assume that the exe-
cution time of a node depends on the amount of consumed
data. Therefore, the highest priority levelPe(i,j)=1 is asso-
ciated with the edge with the longest communication time
in order to promote executions of time consuming nodes.
Priorities of other edges are set up according to their
decreasing communication times. On the contrary, the
receipt of data can only starts if temporal and internal
dependencies are verified, hence the highest priority level
Pr(i,j)=1 is associated to these edges (Figure 3(b)). For
remaining edges a decreasing rule is also used.

The local scheduling of communications attempts to
maximize the use of synchronous transfers. However,
even with local rescheduling it is not always possible to
use only synchronous communications [Gogniat 1997]. In
such cases, asynchronous communications are required
and both transfer types are implemented in the final archi-
tecture. The algorithm is based on two functions:
Node_characterization and Edge_characterization. For
each nodeVi, Node_characterization computes its mobility
interval ∆M_Vi defined as the interval between the ASAP
starting timetsASAPi

 and the ALAP ending timeteALAPi
 of

Vi. Computations of interval mobilities take into account
timing constraints and local scheduling of communica-
tions associated with nodes. The determination of ASAP
starting time and ALAP ending time of nodes is presented
in Figure 4. For each nodeVi, all the predecessors and all
the successors are scanned in order to define respectively
tsASAPi

 andteALAPi
.

Edge_characterization computes the mobility value
Mei,j of a communication edgeei,j defined as the differ-
ence betweenteALAPi

 andtsASAPi
. If tsASAPi

 > teALAPi
 then
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Mei,j is negative and the communication is asynchronous
since there is no timing overlap between the sender and
the receiver. Otherwise the communication is considered
as potential synchronous. The Edge_characterization func-
tion also provides a cost valueξei,j for the edges with a
potential synchronous communication which represents
the ratio of the amount of data (Vdata) transferred through
this edge and its mobility value. Edges with the highest
cost values are considered first since a better hardware
minimization is expected if a synchronous transfer model
is associated with these edges.

The algorithm for the transfer type determination with
the fine evaluation method is similar to the one with the
global evaluation model [Gogniat 1997] (except the evalu-
ation of Node_characterization and Edge_characterization
functions) and is briefly described (Figure 5). Firstly,
nodes and edges are characterized. An edgeei,j is labelled
when a transfer type (synchronous or asynchronous) is
assigned to this edge. Edges with asynchronous communi-
cations (i.e.,Mei,j <0) are labelled and are not considered
for the remainder. NodesVi andVj corresponding to the
first non labelled edgeei,j are preliminary scheduled (local
rescheduling). Impacts of this schedule on other communi-
cation edges are analyzed by characterizing nodes and
edges again. If any communication edgeek,l (k≠i andl≠j)
becomes asynchronous,ei,j is definitively scheduled and is
labelled with a synchronous transfer. Otherwise another
non labelled edgeei,j from L is considered. The process is
iterated until all the communication edges that have no
impact on other edges are labelled.

After this step remaining potential synchronous edges
in L involve at least one asynchronous communication.
Let ζi,j be the cost function associated withei,j defined as
the ratio of the total volume of data associated with edges
of L that become asynchronous and the total volume of
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data associated with edges of L that remain synchronous.
The edgeei,j of L with ζi,j minimum is labelled with a syn-
chronous transfer since the objective is to minimize the
area dedicated to FIFOs.

The next step in the communication synthesis flow out-
lines the nature of communication protocols and
resources. For a synchronous communication only one bus
is required to support the data transfer between the sender
and the receiver. With an asynchronous communication
three resources are necessary: the bus from the sender to
the FIFO, the FIFO itself and the bus from the FIFO to the
receiver. All these resources are characterized with their
width, throughput and the depths for the FIFOs (Table 1).
A sender and a receiver involved in a synchronous transfer
use a blocking protocol. With an asynchronous transfer the
receiver can use either a blocking or a non-blocking proto-
col (see Section 3.2). The sender uses a non-blocking pro-
tocol since memorization elements (FIFO) are available.
These steps end the communication characterization task:
all the communications are characterized with their mode,
type, resource(s) and protocol(s).

3.2.2. Communication implementation task

The aim of this task is to minimize the number and the
size of FIFOs and buses required in the communication

While  all the communication edges are not labelled do
For  each potential synchronous communication edge in the list L do
 Preliminarily schedule the next edge ei,j that is not labelled;
Analyze the impact of that solution on other communication edges;

If  no asynchronous communication edges is revealed then
Schedule definitively the edge ei,j;
Label the edge ei,j with a synchronous transfer;
Reorder the list L;
End if ;

End for ;
Definitively schedule the edge ei,j that have the lowest cost function ζi,j;
Label the edge ei,j with a synchronous transfer;
Remove asynchronous communication edges from the list L;
Reorder the list L;

End while ;

Fig. 5 • Algorithm for transfer type determination

Table 1 Characterization of communication resources
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network to support all the data transfers [Gogniat 1997].
Thus, in order to merge communication resources with
exclusive life times we use an extended weighted bipartite
matching algorithm [Gajski et al. 1992]. Next, data are
distributed between internal memories of components
according to possible parallel execution of transfers and
computations. Control resources (e.g., buffer, multiplexer)
necessary to control the communication network are also
determined. Then, for each component executing several
nodes and edges, the sequences of computation activations
and communications are generated. All these operations
end the HW/SW integration of the application. Hence,
starting from a partitioned and scheduled graph the pro-
posed approach performs the communication synthesis
which defines the communication network and the set of
controls associated with each component in the final archi-
tecture.

4. Design results

To illustrate the principles of this method we consider a
frequency domain block adaptative algorithm for acoustic
echo cancellation (GMDFα). This application is detailed
in Freund et al. [1997b] which expresses also a partition-
ing and a scheduling of tasks. From these results, an opti-
mized hand crafted approach and the presented method
were applied to perform the communication synthesis and
the HW/SW integration. Timing measurements of the
hand crafted approach result from logic simulations and
synthesis. The global and fine evaluation methods have
been applied in order to compare both models. Solutions
are close since all the transfers are implemented using syn-
chronous communications on a single bus. Moreover, sev-
eral communications took benefit of the overlapping
scheme in order to reduce the global timing overhead cost
due to communications. The estimated schedules and the
real one provide similar execution times as shown in
Table 2.

However, the communication synthesis with the global
evaluation method provides overestimated communication
delays since there is a difference of 70% between the esti-

Table 2 Comparison of final results

After communication synthesis

Fine estimation Global estimation Real

Execution
time

6683µs 6722µs 6800 µs

Communication
time

550 µs 700 µs 411µs

Processor
utilization rate

92.7% 92.2% 91%

Hardware unit
utilization rate

14.5% 14.4% 14%

mated solution and the real one. The behavioral model
considered in the fine evaluation method provides a more
realistic estimation of the communication elapsed times
since a difference of 34% is obtained compared to the
hand crafted result.

5. Conclusion and future works

From a static partitioned/scheduled graph and a generic
underlying architecture, the proposed approach performs
communication synthesis and resources optimization in
order to provide a dedicated realistic signal processing
embedded architecture. An extended communication syn-
thesis method has been defined in order to avoid the man-
ual determination of interfaces between heterogeneous
components of the architecture which is error proned and
time consuming. On static applications this new method
has proven its efficiency and permits a better estimation of
the communication schemes implemented in the final
architecture. However, this static model may be inade-
quate to deal with multimedia and telecommunication ser-
vices that require complex controls. Indeed, the key role of
the user interaction and environmental data communica-
tions coupled with sophisticated signal processing lead to
dynamic execution schemes. Hence, our work will be
extended in order to take into account the dynamic fea-
tures of these applications.
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